Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Respir Investig ; 61(2): 247-253, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2273702

ABSTRACT

BACKGROUND: Several reports have revealed that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection tends to have more severe outcomes in cancer patients. Although vaccination reduces the risk of severe disease, data on antibody titers achieved by vaccination is scarce in cancer patients. METHODS: We collected 79 blood samples (69 lung cancer patients and 10 control individuals) and conducted an anti-SARS-CoV-2 antibody assay to compare the antibody titer achieved with current treatment. Sixty-eight patients (86%) received the BNT162 mRNA vaccine and 11 (14%) received the mRNA-1273 vaccine. They were categorized according to the current treatment: control individuals without cancer (cohort A), lung cancer patients who were treated with cytotoxic chemotherapy (cohort B), immunotherapy (cohort C), combination of cytotoxic chemotherapy and immunotherapy (cohort D), tyrosine kinase inhibitors (cohort E), and radiation therapy (cohort F). RESULTS: Among 69 lung cancer patients (cohort B-F), 57 (83%) had adenocarcinoma, and 66 (96%) had advanced-stage cancer. In the anti-SARS-CoV-2 antibody assay, the antibody titer was significantly lower in lung cancer patients than in control individuals (p = 0.01). The median antibody titers were 161 AU/ml in control individuals and 59.9 AU/ml in lung cancer patients. CONCLUSIONS: Antibody titers after the second vaccination were lower in cancer patients than those in healthy individuals. Our findings provide essential information for understanding the benefits and necessity of additional vaccination to prevent SARS-CoV-2 infection in lung cancer patients.


Subject(s)
COVID-19 , Lung Neoplasms , Humans , COVID-19 Vaccines , Antibody Formation , 2019-nCoV Vaccine mRNA-1273 , SARS-CoV-2 , Vaccination , BNT162 Vaccine
2.
Springer Protocols Handbooks ; : 25-32, 2022.
Article in English | EMBASE | ID: covidwho-2173500

ABSTRACT

Turkey coronavirus (TCoV) infection induces the production of protective antibodies against the sequent exposure of TCoV. Serological tests to determine TCoV-specific antibodies are critical to evaluate previous exposure to TCoV in the turkey flocks and differentiate serotypes from different isolates or strains. A specific virus neutralization assay using embryonated turkey eggs and immunofluorescent antibody assay for determining TCoV-specific neutralizing antibodies is described in this chapter. Virus neutralization titer of turkey serum from turkeys infected with TCoV is the dilution of serum that can inhibit TCoV infection in 50 % of embryonated turkey eggs. Virus neutralization assay for TCoV is useful to monitor the immune status of turkey flocks infected with TCoV for the control of the disease. Copyright © Springer Science+Business Media New York 2016.

3.
Microbiol Spectr ; : e0274722, 2022 Nov 21.
Article in English | MEDLINE | ID: covidwho-2137477

ABSTRACT

SARS-CoV-2 mRNA vaccines have been critical to curbing pandemic COVID-19; however, a major shortcoming has been the inability to assess levels of protection after vaccination. This study assessed serologic status of breakthrough infections in vaccinated patients at a Veterans Administration medical center from June through December 2021 during a SARS-CoV-2 delta variant wave. Breakthrough occurred mostly beyond 150 days after two-dose vaccination with a mean of 239 days. Anti-SARS-CoV-2 spike (S) IgG levels were low at 0 to 2 days postsymptoms but increased in subjects presenting thereafter. Population measurements of anti-S IgG and angiotensin converting enzyme-2 receptor (ACE2-R) binding inhibition among uninfected, vaccinated patients suggested immune decay occurred after 150 days with 62% having anti-S IgG levels at or below 1,000 AU comparable with breakthrough patients at 0 to 2 days postsymptom onset. In contrast, vaccination after resolved infection conferred robust enduring anti-S IgG levels (5,000 to >50,000 AU) with >90% ACE2-R binding inhibition. However, monoclonal antibody (MAb)-treated patients did not benefit from their prior infection suggesting impaired establishment of B cell memory. Analysis of boosted patients confirmed the benefit of a third vaccine dose with most having anti-S IgG levels above 5,000 AU with >90% ACE2-R binding inhibition, but a subset had levels <5,000 AU. Anti-S IgG levels >5,000 AU were associated with >90% ACE2-R binding inhibition and no documented breakthrough infections, whereas levels falling below 5,000 AU and approaching 1,000 AU were associated with breakthrough infections. Thus, quantitative antibody measurements may provide a means to guide vaccination intervals for the individual. IMPORTANCE Currently, clinicians have no guidance for the serologic assessment of SARS-Cov-2 postvaccination status regarding protection and risk of infection. Vaccination and boosters are administered blindly without evaluation of need or outcome at the individual level. The recent development of automated quantitative assays for anti-SARS-CoV-2 spike protein IgG antibodies permits accurate measurement of humoral immunity in standardized units. Clinical studies, such as reported here, will help establish protective antibody levels allowing identification and targeted management of poor vaccine responders and vaccinated subjects undergoing immune decay.

4.
Viruses ; 14(10)2022 10 05.
Article in English | MEDLINE | ID: covidwho-2066556

ABSTRACT

The aim of this study was to evaluate the performances of three commercially available antibody assays for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies at different time points following SARS-CoV-2 infection. Sera from 536 cases, including 207 SARS-CoV-2 PCR positive, were tested for SARS-CoV-2 antibodies with the Wantai receptor binding domain (RBD) total antibody assay, Liaison S1/S2 IgG assay and Alinity i nucleocapsid IgG assay and compared to a two-step reference ELISA (SARS-CoV-2 RBD IgG and SARS-CoV-2 spike IgG). Diagnostic sensitivity, specificity, predictive values and Cohen's kappa were calculated for the commercial assays. The assay's sensitivities varied greatly, from 68.7% to 95.3%, but the specificities remained high (96.9-99.1%). The three tests showed good performances in sera sampled 31 to 60 days after PCR positivity compared to the reference ELISA. The total antibody test performed better than the IgG tests the first 30 days and the nucleocapsid IgG test showed reduced sensitivity two months or more after PCR positivity. Hence, the test performances at different time points should be taken into consideration in clinical practice and epidemiological studies. Spike or RBD IgG tests are preferable in sera sampled more than two months following SARS-CoV-2 infection.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2 , Antibodies, Viral , COVID-19 Testing , Immunoglobulin G , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus
5.
Microbiol Spectr ; 10(5): e0212922, 2022 Oct 26.
Article in English | MEDLINE | ID: covidwho-2019796

ABSTRACT

The SARS-CoV-2 Omicron variant is characterized by substantial changes in the antigenic structure of the Spike (S) protein. Therefore, antibodies induced by primary Omicron infection lack neutralizing activity against earlier variants. In this study, we analyzed whether these antigenic changes impact the sensitivity of commercial anti-SARS-CoV-2 antibody assays. Sera from 37 unvaccinated, convalescent individuals after putative primary Omicron infection were tested with a panel of 20 commercial anti-SARS-CoV-2 immunoassays. As controls, we used samples from 43 individuals after primary infection with the SARS-CoV-2 ancestral wild-type strain. In addition, variant-specific live-virus neutralization assays were used as a reference for the presence of SARS-CoV-2-specific antibodies in the samples. Notably, in Omicron convalescents, there was a statistically significant reduction in the sensitivity of all antibody assays containing S or its receptor-binding-domain (RBD) as antigens. Furthermore, antibody levels quantified by these assays displayed a weaker correlation with Omicron-specific neutralizing antibody titers than with those against the wild type. In contrast, the sensitivity of nucleocapsid-protein-specific immunoassays was similar in wild-type and Omicron-infected subjects. In summary, the antigenic changes in the Omicron S lead to reduced immunoreactivity in the current commercial S- and RBD-specific antibody assays, impairing their diagnostic performance. IMPORTANCE This study demonstrates that the antigenic changes of the SARS-CoV-2 Omicron variant affect test results from commercial Spike- and RBD-specific antibody assays, significantly diminishing their sensitivities and diagnostic abilities to assess neutralizing antibodies.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Neutralization Tests , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/metabolism , SARS-CoV-2 , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/metabolism , COVID-19/diagnosis , Antibodies, Viral , Antibodies, Neutralizing
6.
J Clin Virol ; 155: 105269, 2022 10.
Article in English | MEDLINE | ID: covidwho-1996328

ABSTRACT

BACKGROUND: The concentration of antibodies against the SARS-CoV-2 spike protein is frequently being measured for clinical and epidemiological purposes. The aim of this study was to examine whether the results of different quantitative SARS-CoV-2 spike antibody assays are comparable. MATERIAL AND METHODS: The Siemens SARS-CoV-2 IgG, Abbott SARS-CoV-2 IgG II Quant, Roche ElecsysT Anti-SARS-CoV-2 S, and Euroimmun Anti-SARS-CoV-2-QuantiVac assay were compared with 110 sera from patients 6-9 months after SARS-CoV-2 infection and the WHO First International SARS-CoV-2 antibody standard 20/136. The antibody values were converted into WHO binding antibody units (BAU)/ml. The diagnostic sensitivity of the assays was determined and the antibody values were compared. RESULTS: The diagnostic sensitivity ranged from 57.3% (Euroimmun) to 100% (Roche). The antibody concentration values of different assays correlated with Pearson coefficients of correlation between 0.729 and 0.953. The geometric mean antibody values of the Abbott, Siemens and Euroimmun assay varied by a factor of 1.1-1.2. The geometric mean antibody values of the Roche assay were 2.4-2.8 times higher than those from the other assays. The assays yielded varying results with the WHO International antibody standard. CONCLUSIONS: The quantitative SARS-CoV-2 antibody assays from Abbott, Siemens, Roche and Euroimmun correlate strongly but differ in the antibody concentrations. Therefore, the same assay should be used when testing patients repeatedly. In addition, the name of the assay used and the manufacturer should be indicated along with the test results.


Subject(s)
COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Antibodies, Viral , COVID-19/diagnosis , Humans , Immunoglobulin G , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus/analysis , Spike Glycoprotein, Coronavirus/chemistry
7.
J Infect Dis ; 226(10): 1731-1742, 2022 Nov 11.
Article in English | MEDLINE | ID: covidwho-1886452

ABSTRACT

BACKGROUND: Messenger RNA (mRNA)-1273 vaccine demonstrated 93.2% efficacy against coronavirus disease 2019 (COVID-19) in the Coronavirus Efficacy (COVE) trial. The humoral immunogenicity results are now reported. METHODS: Participants received 2 mRNA-1273 (100 µg) or placebo injections, 28 days apart. Immune responses were evaluated in a prespecified, randomly selected per-protocol immunogenicity population (n = 272 placebo; n = 1185 mRNA-1273). Serum binding antibodies (bAbs) and neutralizing antibodies (nAbs) to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-spike protein were assessed at days 1, 29, and 57 by baseline SARS-CoV-2-negative (n = 1197) and SARS-CoV-2-positive (n = 260) status, age, and sex. RESULTS: SARS-CoV-2-negative vaccinees had bAb geometric mean AU/mL levels of 35 753 at day 29 that increased to 316 448 at day 57 and nAb inhibitory dilution 50% titers of 55 at day 29 that rose to 1081 at day 57. In SARS-CoV-2-positive vacinees, the first mRNA-1273 injection elicited bAb and nAb levels that were 11-fold (410 049) and 27-fold (1479) higher than in SARS-CoV-2-negative vaccinees, respectively, and were comparable to levels after 2 injections in uninfected participants. Findings were generally consistent by age and sex. CONCLUSIONS: mRNA-1273 elicited robust serologic immune responses across age, sex, and SARS-CoV-2 status, consistent with its high COVID-19 efficacy. Higher immune responses in those previously infected support a booster-type effect. Clinical Trials Registration. NCT04470427.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , 2019-nCoV Vaccine mRNA-1273 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Immunogenicity, Vaccine , RNA, Messenger , Spike Glycoprotein, Coronavirus
8.
Cell ; 185(9): 1539-1548.e5, 2022 04 28.
Article in English | MEDLINE | ID: covidwho-1748150

ABSTRACT

Virus-like particle (VLP) and live virus assays were used to investigate neutralizing immunity against Delta and Omicron SARS-CoV-2 variants in 259 samples from 128 vaccinated individuals. Following Delta breakthrough infection, titers against WT rose 57-fold and 3.1-fold compared with uninfected boosted and unboosted individuals, respectively, versus only a 5.8-fold increase and 3.1-fold decrease for Omicron breakthrough infection. Among immunocompetent, unboosted patients, Delta breakthrough infections induced 10.8-fold higher titers against WT compared with Omicron (p = 0.037). Decreased antibody responses in Omicron breakthrough infections relative to Delta were potentially related to a higher proportion of asymptomatic or mild breakthrough infections (55.0% versus 28.6%, respectively), which exhibited 12.3-fold lower titers against WT compared with moderate to severe infections (p = 0.020). Following either Delta or Omicron breakthrough infection, limited variant-specific cross-neutralizing immunity was observed. These results suggest that Omicron breakthrough infections are less immunogenic than Delta, thus providing reduced protection against reinfection or infection from future variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines , Humans
9.
J Infect Dis ; 225(6): 971-976, 2022 03 15.
Article in English | MEDLINE | ID: covidwho-1740893

ABSTRACT

We compared neutralizing antibody titers of convalescent samples collected before and after the emergence of novel strains of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), against the wild-type virus and Alpha (B.1.1.7) and Beta (B.1.351) variants. Plasma samples collected in 2020 before emergence of variants showed reduced titers against the Alpha variants, and both sets of samples demonstrated significantly reduced titers against Beta. Comparison of microneutralization titers with those obtained with pseudotype and hemagglutination tests showed a good correlation between their titers and effects of strain variation, supporting the use of these simpler assays for assessing the potency of convalescent plasma against currently circulating and emerging strains of SARS-CoV-2.


Subject(s)
COVID-19/therapy , SARS-CoV-2 , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Humans , Immunization, Passive , SARS-CoV-2/genetics , COVID-19 Serotherapy
10.
Biotechnol J ; 17(5): e2100422, 2022 May.
Article in English | MEDLINE | ID: covidwho-1648954

ABSTRACT

The receptor binding domain (RBD) of the SARS-CoV-2 spike (S)-protein is a prime target of virus-neutralizing antibodies present in convalescent sera of COVID-19 patients and thus is considered a key antigen for immunosurveillance studies and vaccine development. Although recombinant expression of RBD has been achieved in several eukaryotic systems, mammalian cells have proven particularly useful. The authors aimed to optimize RBD produced in HEK293-6E cells towards a stable homogeneous preparation and addressed its O-glycosylation as well as the unpaired cysteine residue 538 in the widely used RBD (319-541) sequence. The authors found that an intact O-glycosylation site at T323 is highly relevant for the expression and maintenance of RBD as a monomer. Furthermore, it was shown that deletion or substitution of the unpaired cysteine residue C538 reduces the intrinsic propensity of RBD to form oligomeric aggregates, concomitant with an increased yield of the monomeric form of the protein. Bead-based and enzyme-linked immunosorbent assays utilizing these optimized RBD variants displayed excellent performance with respect to the specific detection of even low levels of SARS-CoV-2 antibodies in convalescent sera. Hence, these RBD variants could be instrumental for the further development of serological SARS-CoV-2 tests and inform the design of RBD-based vaccine candidates.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/therapy , Cysteine , HEK293 Cells , Humans , Immunization, Passive , Mammals , Protein Binding , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , COVID-19 Serotherapy
11.
Card Electrophysiol Clin ; 14(1): 111-114, 2022 03.
Article in English | MEDLINE | ID: covidwho-1648715

ABSTRACT

Tests to detect active viral infection and related immune response in the staff and patients attending health care facilities effectively identified positive cases presenting with or without symptoms of coronavirus disease (COVID)-19. Subsequent home isolation of these contagious cases helped curb the chance of the spread of infection at the workplace. Furthermore, serologic tests conducted postvaccination facilitated the detection of individuals with poor immune response following active immunization that would likely require further safety measures to protect themselves from contracting the infection in health care facilities.


Subject(s)
COVID-19 Testing , COVID-19 , COVID-19/diagnosis , Health Personnel , Humans , SARS-CoV-2 , Workplace
12.
J Med Virol ; 93(12): 6696-6702, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1544322

ABSTRACT

The pandemic of COVID-19 has caused enormous fatalities worldwide. Serological assays are important for detection of asymptomatic or mild cases of COVID-19, and sero-prevalence and vaccine efficacy studies. Here, we evaluated and compared the performance of seven commercially available enzyme-linked immunosorbent assay (ELISA)s for detection of anti-severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) immunoglobulin G (IgG). The ELISAs were evaluated with a characterized panel of 100 serum samples from qRT-PCR confirmed COVID-19 patients, collected 14 days post onset disease, 100 SARS-CoV-2 negative samples and compared the results with that of neutralization assay. Results were analysed by creating the receiver operating characteristic curve of all the assays in reference to the neutralization assay. All kits, were found to be suitable for detection of IgG against SARS-CoV-2 with high accuracy. The DiaPro COVID-19 IgG ELISA showed the highest sensitivity (98%) among the kits. The assays demonstrated high sensitivity and specificity in detecting the IgG antibodies against SARS-CoV-2. However, the presence of IgG antibodies does not always correspond to neutralizing antibodies. Due to their good accuracy indices, these assays can also aid in tracing mild infections, in cohort studies and in pre-vaccine evaluations.


Subject(s)
Antibodies, Viral/blood , COVID-19 Testing/methods , Enzyme-Linked Immunosorbent Assay , Immunoglobulin G/blood , SARS-CoV-2/immunology , Antibodies, Viral/immunology , COVID-19/diagnosis , COVID-19/immunology , Enzyme-Linked Immunosorbent Assay/methods , Enzyme-Linked Immunosorbent Assay/standards , Humans , Immunoglobulin G/immunology , Neutralization Tests , Reagent Kits, Diagnostic , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction , Sensitivity and Specificity
13.
Heliyon ; 7(12): e08444, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1521002

ABSTRACT

A novel clinical assay for the detection and quantitation of antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was adapted from an in-house, research-based enzyme-linked immunosorbent assay (ELISA). Development and validation were performed under regulatory guidelines, and the test obtained emergency use authorization (EUA) from the New York State Department of Health (NYSDOH) and the Food and Drug Administration (FDA). The Mount Sinai coronavirus disease 2019 (COVID-19) antibody assay is an orthogonal, quantitative direct ELISA test which detects antibodies reactive to the receptor binding domain (RBD) and the spike protein of the novel SARS-CoV-2. The assay is performed on 96-well plates coated with either SARS-CoV-2 recombinant RBD or spike proteins. The test is divided into two stages, a qualitative screening assay against RBD and a quantitative assay against the full-length spike protein. The test uses pooled high titer serum as a reference standard. Negative pre-COVID-19 and positive post-COVID-19, PCR-confirmed specimens were incorporated in each ELISA test run, and the assays were performed independently at two different locations. The Mount Sinai COVID-19 serology performed with high sensitivity and specificity, 92.5% (95% CI: 0.785-0.980) and 100% (CI: 0.939-1.000) respectively. Between-run precision was assessed with a single run repeated over 22 days; and within-run precision was assessed with 10 replicates per day over 22 days. Both were within reported acceptance criteria (CV ≤ 20%). This population-based study reveals the applicability and reliability of this novel orthogonal COVID-19 serology test for the detection and quantitation of antibodies against SARS-CoV-2, allowing a broad set of clinical applications, including the broad evaluation of SARS-CoV-2 seroprevalence and antibody profiling in different population subsets.

14.
Vaccines (Basel) ; 9(11)2021 Nov 11.
Article in English | MEDLINE | ID: covidwho-1512746

ABSTRACT

Robust assay development for SARS-CoV-2 serological testing requires assessment of asymptomatic and non-hospitalised individuals to determine if assays are sensitive to mild antibody responses. Our study evaluated the performance characteristics of two high-throughput SARS-CoV-2 IgG nucleocapsid assays (Abbott Architect and Roche) and The Binding Site (TBS) Anti-Spike IgG/A/M ELISA kit in samples from healthcare workers (HCWs). The 252 samples were collected from multi-site NHS trusts and analysed for SARS-CoV-2 serology. Assay performance was evaluated between these three platforms and ROC curves were used to redefine the Abbott threshold. Concordance between Abbott and TBS was 66%. Any discrepant results were analysed using Roche, which showed 100% concordance with TBS. Analysis conducted in HCWs within 58 days post-PCR result demonstrated 100% sensitivity for both Abbott and Roche. Longitudinal analysis for >100 days post-PCR led to sensitivity of 77.2% and 100% for Abbott and Roche, respectively. A redefined Abbott threshold (0.64) increased sensitivity to 90%, producing results comparable to TBS and Roche. The manufacturer's threshold set by Abbott contributes to lower sensitivity and elevated false-negative occurrences. Abbott performance improved upon re-optimisation of the cut-off threshold. Our findings provided evidence that TBS can be used as bespoke alternative for SARS-CoV-2 serology analysis where high-throughput platforms are not feasible on site.

15.
J Clin Microbiol ; 59(7): e0083721, 2021 06 18.
Article in English | MEDLINE | ID: covidwho-1486488

ABSTRACT

We assessed the performance of the CoronaCHEK lateral flow assay on samples from Uganda and Baltimore to determine the impact of geographic origin on assay performance. Plasma samples from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) PCR-positive individuals (Uganda, 78 samples from 78 individuals, and Baltimore, 266 samples from 38 individuals) and from prepandemic individuals (Uganda, 1,077, and Baltimore, 532) were evaluated. Prevalence ratios (PR) were calculated to identify factors associated with a false-positive test. After the first positive PCR in Ugandan samples, the sensitivity was 45% (95% confidence interval [CI], 24,68) at 0 to 7 days, 79% (95% CI, 64 to 91) at 8 to 14 days, and 76% (95% CI, 50 to 93) at >15 days. In samples from Baltimore, sensitivity was 39% (95% CI, 30 to 49) at 0 to 7 days, 86% (95% CI, 79 to 92) at 8 to 14 days, and 100% (95% CI, 89 to 100) at 15 days after positive PCR. The specificity of 96.5% (95% CI, 97.5 to 95.2) in Ugandan samples was significantly lower than that in samples from Baltimore, 99.3% (95% CI, 98.1 to 99.8; P < 0.01). In Ugandan samples, individuals with a false-positive result were more likely to be male (PR, 2.04; 95% CI, 1.03,3.69) or individuals who had had a fever more than a month prior to sample acquisition (PR, 2.87; 95% CI, 1.12 to 7.35). Sensitivity of the CoronaCHEK was similar in samples from Uganda and Baltimore. The specificity was significantly lower in Ugandan samples than in Baltimore samples. False-positive results in Ugandan samples appear to correlate with a recent history of a febrile illness, potentially indicative of a cross-reactive immune response in individuals from East Africa.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Female , Humans , Male , Sensitivity and Specificity , Uganda
16.
Pract Lab Med ; 27: e00257, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1466837

ABSTRACT

INTRODUCTION: We evaluated the Roche Elecsys Anti-SARS-CoV-2 and Snibe SARS-CoV-2 S-RBD IgG spike chemiluminescent immunoassays and compared them to existing Roche/Abbott nucleocapsid and Abbott IgM spike assays. METHODS: We enrolled 184 SARS-CoV-2 RT-PCR positive samples and 215 controls (172 pre-pandemic, and 43 cross-reactivity) to evaluate the Roche spike antibody (anti-SARS-CoV-2-S) assay. For the Snibe evaluation, we included 119 RT-PCR positive samples and 249 controls (200 pre-pandemice, 49 cross-reactivity). 98 cases had been tested on three spike assays (Roche total antibody, Snibe IgG and Abbott IgM). RESULTS: The Roche anti-SARS-CoV-2-S assay had a CV of 0.5% (0.82U/mL) and 2.3% (8.72U/mL) and was linear from 1.16 to 240U/mL. The Snibe assay was linear from 6.43 to 77.7AU/mL, CV of 5.5% (0.43AU/mL) and 8.8% (0.18AU/mL). The Snibe spike assay was significantly more sensitive than the Abbott IgG assay at 0-6 days POS (35.2% vs 3.6%, mean difference 29.6%, 95% CI 17.5 to 41.8, p < 0.0001). Optimized LORs significantly improved the sensitivity of the Roche spike (48.1%-56.7%) and both nucleocapsid assays (Roche 43.3%-65.5%, Abbott 3.6%-18.5%) in early disease. CONCLUSION: Although both spike assays showed higher sensitivity than their nucleocapsid counterparts, lower, optimized LORs provided the most significant improvements to sensitivity.

17.
J Clin Microbiol ; 59(9): e0028821, 2021 08 18.
Article in English | MEDLINE | ID: covidwho-1365123

ABSTRACT

In the initial stages of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) COVID-19 pandemic, a plethora of new serology tests were developed and introduced to the global market. Many were not evaluated rigorously, and there is a significant lack of concordance in results across methods. To enable meaningful clinical decisions to be made, robustly evaluated, quantitative serology methods are needed. These should be harmonized to a primary reference material, allowing for the comparison of trial data and improved clinical decision making. A comprehensive evaluation of the new Abbott IgG II anti-SARS-CoV-2 IgG method was undertaken using CLSI-based protocols. Two different candidate primary reference materials and verification panels were assessed with a goal to move toward harmonization. The Abbott IgG II method performed well across a wide range of parameters with excellent imprecision (<3.5%) and was linear throughout the positive range (tested to 38,365 AU/ml). The sensitivity (based on ≥14-day post-positive reverse transcription-PCR [RT-PCR] samples) and specificity were 98.3% (90.6% to 100.0%) and 99.5% (97.1% to 100%), respectively. The candidate reference materials showed poor correlation across methods, with mixed responses noted in methods that use the spike protein versus the nucleocapsid proteins as their binding antigen. The Abbott IgG II anti-SARS-CoV-2 measurement appears to be the first linear method potentially capable of monitoring the immune response to natural infection, including from new emerging variants. The candidate reference materials assessed did not generate uniform results across several methods, and further steps are needed to enable the harmonization process.


Subject(s)
COVID-19 , Antibodies, Viral , Humans , Immunoglobulin G , Pandemics , SARS-CoV-2 , Sensitivity and Specificity , South Africa
18.
EBioMedicine ; 67: 103348, 2021 May.
Article in English | MEDLINE | ID: covidwho-1201238

ABSTRACT

BACKGROUND: Antibody tests are essential tools to investigate humoral immunity following SARS-CoV-2 infection or vaccination. While first-generation antibody tests have primarily provided qualitative results, accurate seroprevalence studies and tracking of antibody levels over time require highly specific, sensitive and quantitative test setups. METHODS: We have developed two quantitative, easy-to-implement SARS-CoV-2 antibody tests, based on the spike receptor binding domain and the nucleocapsid protein. Comprehensive evaluation of antigens from several biotechnological platforms enabled the identification of superior antigen designs for reliable serodiagnostic. Cut-off modelling based on unprecedented large and heterogeneous multicentric validation cohorts allowed us to define optimal thresholds for the tests' broad applications in different aspects of clinical use, such as seroprevalence studies and convalescent plasma donor qualification. FINDINGS: Both developed serotests individually performed similarly-well as fully-automated CE-marked test systems. Our described sensitivity-improved orthogonal test approach assures highest specificity (99.8%); thereby enabling robust serodiagnosis in low-prevalence settings with simple test formats. The inclusion of a calibrator permits accurate quantitative monitoring of antibody concentrations in samples collected at different time points during the acute and convalescent phase of COVID-19 and disclosed antibody level thresholds that correlate well with robust neutralization of authentic SARS-CoV-2 virus. INTERPRETATION: We demonstrate that antigen source and purity strongly impact serotest performance. Comprehensive biotechnology-assisted selection of antigens and in-depth characterisation of the assays allowed us to overcome limitations of simple ELISA-based antibody test formats based on chromometric reporters, to yield comparable assay performance as fully-automated platforms. FUNDING: WWTF, Project No. COV20-016; BOKU, LBI/LBG.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing/methods , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Binding Sites , CHO Cells , COVID-19/immunology , Cricetulus , Early Diagnosis , HEK293 Cells , Humans , Immunoglobulin G/blood , Middle Aged , Sensitivity and Specificity , Young Adult
19.
J Clin Virol ; 138: 104797, 2021 05.
Article in English | MEDLINE | ID: covidwho-1152482

ABSTRACT

A total of 1080 individual patient samples (158 positive serology samples from confirmed, predominantly mildly symptomatic COVID-19 patients and 922 serology negative including 496 collected pre-COVID) from four states in Australia were analysed on four commercial SARS-CoV-2 serological assays targeting antibodies to different antigens (Roche Elecsys and Abbott Architect: nucleocapsid; Diasorin Liaison and Euroimmun: spike). A subset was compared to immunofluorescent antibody (IFA) and micro-neutralisation. Sensitivity and specificity of the Roche (n = 1033), Abbott (n = 806), Diasorin (n = 1034) and Euroimmun (n = 175) were 93.7 %/99.5 %, 90.2 %/99.4 %, 88.6 %/98.6 % and 91.3 %/98.8 %, respectively. ROC analysis with specificity held at 99 % increased the sensitivity for the Roche and Abbott assays from 93.7% to 98.7% (cut-off 0.21) and 90.2 % to 94.0 % (cut-off 0.91), respectively. Overall seropositivity of samples increased from a maximum of 23 % for samples 0-7 days-post-onset of symptoms (dpos), to 61 % from samples 8-14dpos and 93 % from those >14dpos. IFA and microneutralisation values correlated best with assays targeting antibodies to spike protein with values >80 AU/mL on the Diasorin assay associated with neutralising antibody. Detectable antibody was present in 22/23 (96 %), 20/23 (87 %), 15/23 (65 %) and 9/22 (41 %) patients with samples >180dpos on the Roche, Diasorin, Abbott and microneutralisation assays respectively. Given the low prevalence in this community, two-step algorithms on initial positive results saw an increase in the positive predictive value (PPV) of positive samples (39 %-65 % to ≥98 %) for all combinations. Similarly accuracy increased from a range of 98.5 %-99.4 % to ≥99.8 % assuming a 1 % seroprevalence. Negative predictive value (NPV) was high (≥99.8 %) regardless of which assay was used initially.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing/methods , COVID-19/diagnosis , Reagent Kits, Diagnostic , Adolescent , Adult , Aged , Aged, 80 and over , Australia/epidemiology , COVID-19/epidemiology , Child , Coronavirus Nucleocapsid Proteins/immunology , Female , Humans , Immunoglobulin Isotypes/blood , Male , Middle Aged , Phosphoproteins/immunology , Prevalence , Sensitivity and Specificity , Seroepidemiologic Studies , Spike Glycoprotein, Coronavirus/immunology , Young Adult
20.
Clin Med (Lond) ; 21(3): e300-e305, 2021 05.
Article in English | MEDLINE | ID: covidwho-1138928

ABSTRACT

BACKGROUND: The seroprevalence of antibodies to SARS-CoV-2 in healthcare workers is variable throughout the world. This study compares the use of two antibody assays among large cohorts of healthcare workers in southern England. METHODS: This cohort study includes data obtained from staff at Western Sussex Hospitals NHS Foundation Trust (WSHT) and Brighton and Sussex University Hospitals (BSUH) during voluntary antibody testing, using Abbott and Roche SARS-CoV-2 antibody assays at each Trust respectively. RESULTS: The observed seroprevalence level was 7.9% for the WSHT/Abbott cohort versus 13% for the BSUH/Roche cohort. Based on a previous positive PCR, we find that the false-negative rate of the Abbott and Roche assays were 60.2% and 19% respectively, implying sensitivity levels of 39.8% and 81%. Within these cohorts, seropositivity was most strongly associated with those of South Asian ethnicity, allied health professionals and male sex (p<0.0001). CONCLUSIONS: In this real-world study, neither antibody test performed to the specification level stated by the manufacturer. More rigorous testing of these and other assays in target populations is recommended prior to widespread usage if they are to provide data that might be useful to control the pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Cohort Studies , England , Health Personnel , Humans , Male , Seroepidemiologic Studies , United Kingdom/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL